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Motivation
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What is the problem?

No information available about appliances and the electricity grid 
without intrusive measurements (e.g. smart plugs).

What is the goal?

A smart meter that enables appliance and electricity information 
retrieval with machine learning techniques.

What is the task?

Classification of appliances and power disaggregation.
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What we would like to have

intrusive measurement non-intrusive measurement
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Use Cases

• Identification of currently running appliances
Is this a toaster, TV or a hair dryer?

• Information retrieval from currently running appliances
Power, on-duration, state patterns

• Detection of energy waste
Out-of-behavior pattern

• Maintenance support
Localizing and predicting of appliance faults

• Building safety
Detection of unauthorized appliances usage
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State-of-the-Art Overview
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• Reinhardt et al. [1]: up to 98% accuracy (laboratory environment) 
– 3,400 high frequency samples 
– 16 appliances 
– 10 spectral features 

• Jiang et al. [2]: around 90% accuracy (real and laboratory environment)
– low amount of high frequency samples 
– 11 appliances with an 
– edge based startup transient recognition

• Yang et al. [3]: around 95% accuracy (laboratory environment)
– 341 high frequency samples
– 5 appliances
– industrial loads 

• Patel et al. [4]: around 85-90% accuracy (real environment)
– ~3000 high frequency samples
– ~19 appliances
– household loads, up to 100kHz observations, only voltage transients
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State-of-the-Art Discussion
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• Too few data samples

• Too few appliances

• Often laboratory environment

• Mostly only household

• Non-public data sets

• Missing ground truth

• Low appliance type diversity

http://www.begincollege.com

http://www.geappliances.com
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Our Contribution

• Online and real-time electricity and appliance 
information retrieval system

• Comprehensive approach to appliance identification, 
recognition and classification

• Preliminary evaluation on existing data sets
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Classification Flow Chart
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Appliance Classification & Identification

Department of Computer Science, Chair for Application & Middleware Systems 9

Data Acquisition Preprocessing Feature Extraction

non-intrusive
3-phases

measurements

compensation
calibration

filtering

power
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cos-phi SVM, ANN

Training

Classification

training mode

runtime mode
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Existing and Forthcoming Data Sets
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Household Office Industrial

UK-DALE
BLUED
REDD
PLAID 

NoFaRe Office
(to be collected)

NoFaRe Lab
(to be collected)

NoFaRe Industrial
(to be collected)

High sampling frequency (>10kHz)
High sampling resolution (>12bit)
Appliance event ground truth
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• Compensating phase shift
Induced by measurement system

• Scaling of voltage & current
current

voltage
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Preprocessing before preprocessing:
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Feature Extraction

short-time features
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computed mid-time features

long-time features statistical analysis
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Learning & Classification

• Learning of feature states in training mode

• Use of machine learning (k-NN, SVM, ANN …)

• Classification of unknown appliance in runtime mode
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Features
Class F1 F2 F3
Kettle1 0.13 0.86 0.34
Kettle2 0.12 0.91 0.35
Toaster1 0.33 0.31 0.75
Toaster2 0.34 0.28 0.68

? 0.14 0.88 0.33

Training

Classification
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Experimental Setup

• Extracting start-up transients
• Feature extraction on start-up transients
• Classification of start-up transients
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Features
F1 F2 F3
0.13 0.86 0.34
0.12 0.91 0.35
0.33 0.31 0.75
0.34 0.28 0.68
. . .
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UK-DALE Data Set Results

• 37299 samples from 

• 2 households

• 23 classes

• 7 discriminating features 

• low diversity per class

• High amount of samples

• Accuracy with Cross Validation 

• with SVM: 93%

• with k-NN: 89%
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UK-DALE Data Set Discussion

• Indirect startup ground truth

• Real-world scenario

• Sample counts vary highly 
across classes

• Low diversity per class
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High accuracy 
because of low inner-class diversity 

and uneven class distributions
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Plaid Plug Data Set Results

• 408 samples

• 11 classes

• 55 households

• 7 discriminating features 

• High diversity per class

• Low amount of samples

• Accuracy with Cross Validation 

• with SVM: 92%

• with k-NN: 88%
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Plaid Plug Data Set Discussion
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• Data inconsistently labeled

• Not a real-world scenario but isolated samples

• High amount of data unusable because 
of missing calibration information

High accuracy because of 
laboratory quality
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Future Work & Discussion
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• More datasets (REDD, …)

• Features and feature combinations

• Influence of different sampling rates on accuracy

• Different classifier (SVM, K-NN, ANN, HMM,…)

• Feature space transformation (PCA, LDA)
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What we would like to have
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• Many intrusive sensors for each appliance
• Simple measuring device 
• High hardware effort
• Low Software effort

• One non-intrusive Sensors for all appliances
• Intelligent Measuring device
• Low Hardware effort
• High Software effort
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Features 
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• Mean Power:

• Signal to Signal-Mean Ratio:

• Inrush Current Ratio:

• Phase Shift:
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Features (2) 
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• Curve Shape Approximation:

• Harmonics: • V-I Trajectory:
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Outline 
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• Motivation
• State-of-the-Art
• Algorithmic approach
• Pattern recognition in NILM

• Experiments 
• Results
• Future Work & Discussion
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Feature Extraction

• Ultra short-time features

• Acquired short-time features

• Long-time features

• Statistical analysis
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