Investigating Wind Farm Control over Different Communication Network Technologies

EnergieInformatik2015

Jacob Theilgaard Madsen, Mislav Findrik, Domagoj Drenjanac and Hans-Peter Schwefel Nov 13, 2015

## **Problem statement**

- Wind farm connected to MV grid
- Central control of distributed assets
- How does communication network affect controller performance?
- Which communication technologies are feasible?



# System description I Communication network architecture

- Central controller
  - Communicates over Access Network
- Local controller on wind turbine
  - Acts on set-points from central controller
- Sensors
  - Periodically send measurements
- Gateway
  - Forwards sensor information



# System description 2 Controller description

- Control of a wind-farm from a central controller
  - Maintain a power reference
  - Reduce damage wind turbine sustains during operation
- Performance metric is accumulated damage
- Controller acts periodically every 150 ms
- Wind turbine state to estimate fatigue/damage



# System description 3 Communication overview

- Message sequence diagram
  - T<sub>s</sub>: Control period (150 ms)
  - T<sub>compute</sub>: computation time (50 ms)
  - T<sub>o</sub>: offset
  - C<sub>i</sub>: Computation instant

## Tradeoff: Larger T<sub>o</sub>

- Gives better chance of reaching C<sub>i</sub> in time
- Larger risk of wind turbine state changing significantly



## **Testbed measurement steup**

- 10 wind turbines with 3 sensors
- I ping message every 150 ms
- Four different communication technolgies measured
  - 2G/3G base station located on top of nearby building, modem located inside office building near window
  - WLAN in an office-like enviroment
  - Narrow-band PLC over 1m powerline
- Measure RTT and packet loss
  - No losses except in PLC case







## **Co-simulation framework**

- Controller simulated via
  MATLAB
- Network simulated via OMNeT++
- Measurement traces used as packet delays

- $\bullet \ \mathsf{OMNeT}{++} \ \mathsf{to} \ \mathsf{OMNeT}{++} \ \mathsf{Interface} \\$
- $\bullet~\mathsf{OMNeT}{++}$  to MATLAB Interface
- MATLAB to MATLAB Interface



## **Controller performance results**

- 3G trace: accumulated damage
  - Mean RTT delay of 16.7 ms
- Ideal network: accumulated damage
  - 0 delay
  - WLAN similar behaviour to ideal network
    - Not shown here
    - Mean delay of 5.4 ms



## **Controller performance results**

- 2G trace: accumulated damage
  - Mean RTT delay of 385.2 ms
  - Messages are on average one control period old
- Cannot determine optimal offset within one control period



### Summary

- We investigated the impact of different OTS communication technologies on controller performance
- Communication network delays impact performance
  - 3G and WLAN showed capable of handling the communication requirements
  - 2G showed delays that were too long to be of use to determine an optimal offset
  - PLC was not simulated as the testbed measurements showed too low throughput
- Access strategy optimization
  - 3G optimal offset shown to be in the interval [25 ms, 87.5 ms]
  - WLAN optimal offset shown to be in the interval [12.5 ms, 87.5 ms]

# Thank you for your attention

# **QUESTIONS?**

