12.-13. November in Karlsruhe

energieinformatik2015

13 November 2015 Cyber Security Analysis of Smart Grid Communications with a Network Simulator

<u>Roberta Terruggia</u> and Giovanna Dondossola RSE Ricerca sul Sistema Energetico

Milano ITALY

Agenda

The Medium Voltage Control use case & Medium Voltage testbed

Simulation model

- Communication
- DoS attack
- LTE mobile technology

Results

- Attack setup parameters
- Scaling up the model
- LTE model

Conclusion

DER (Distributed Energy Resource) forecast in MV grids: a realistic grid 2020 scenario

RSE

Medium Voltage Control

RSE PCS-ResTest Lab Layout

Focus: security of communications

Objective: run cyber security experiments over realistic VC scenarios

Technologies

- •Data models
- •IEC 61850 Part 7
- •DER data models: IEC 61850 7 420
- •Communication protocols
- •IEC 61850 Part 8-1 ed. 2 ->Manufacturing Message Specification (MMS)
- •Security measures
- •End-to-end security -> IEC 62351-3 (TLS) ed.2
- Monitoring -> IEC 62351-7
- Network technologies
- •Wired/wireless (Ethernet, LTE)

MV Control Test Bed

Grid and ICT Control Centres

Information Flows – RES measurements

IEC 61850 – MMS

IEC 61850-8: Specific communication service mapping (SCSM) -> IEC 61850-8-1: Mappings to MMS

Manufacturing Message Specification ISO 9506

Application Level Protocol

Internationally standardized messaging system for the exchange of real-time data and supervisory control info

Independent of:

- the application function being performed
- the device vendor

Substation/DER communications

Focus of the simulation model

Network simulator: Why ns-3? C++ (no Otlc) INS-3 **IP** address NETWORK SIMULATOR **Sockets** Application on More interfaces per node Application pn Sockets-like API Protocol Protoco Packet(s) Packets contain real string of bytes stack stack Node Node Integration of real source code -NetDevice ce NetDevice Channel application layer protocols Channel Pcap traces

ns-3: DCE framework

Direct Code Execution:

- Direct Code Execution (DCE) is a framework for ns-3 that provides facilities to execute, within ns-3, existing implementations of userspace and kernelspace network protocols or applications without source code changes.
 - Include MMS client / server testbed implementation
 - Include attack tools

ns-3 model

7 nodes

- Router nodes -> 2 NetDevices
- Server nodes -> 1 NetDevice

5 networks

• IP address

Measurements

- From DER Scada to MVGC
- TCP stack (TcpSocketFactory)
 - sink port 102
- Data rate 500 Kbps

Tools from the testbed

Testbed – Simulation alignment RSE Information flow

48 14.964851	158.47.121.32	192,168.1.43 T	CP	66 35314 > iso-tsap	[ACK]					
49 16.978357	192.168.1.43	158.47.121.32 M	MS	179 unconfirmed-PDU						
50 16.978454	158.47.121.32	192,168.1.43 T	CP	66 35314 > iso-tsap	[ACK]	62 17.002374	10.1.1.1	10.1.3.1	MMS	unconfirmed-PDU
51 18,990947	192.168.1.43	158.47.121.32 M	IMS	179 unconfirmed-PDU		63 17.204617	10.1.3.1	10.1.1.1	TCP	49153→102 [ACK] :
52 18.991044	158.47.121.32	192.168.1.43 T	CP	66 35314 > iso-tsap	[ACK]	64 19,002374	10.1.1.1	10.1.3.1	MMS	unconfirmed-PDU
53 21.004561	192.168.1.43	158.47.121.32 M	IMS	179 unconfirmed-PDU		65 19,204617	10.1.3.1	10.1.1.1	TCP	49153→102 [ACK] 5
54 21.004657	158.47.121.32	192.168.1.43 T	CP	66 35314 > iso-tsap	[ACK]	66 21.002374	10.1.1.1	10.1.3.1	MMS	unconfirmed-PDU
56 23.007143	192.168.1.43	158,47,121.32 M	MS	179 unconfirmed-PDU		67 21,204617	10.1.3.1	10.1.1.1	TCP	49153→102 [ACK] :
57 23.007238	158.47.121.32	192,168.1.43 T	CP	66 35314 > iso-tsap	[ACK]	68 23,002374	10.1.1.1	10.1.3.1	MMS	unconfirmed-PDU
58 25.022732	192.168.1.43	158.47.121.32 M	MS	179 unconfirmed-PDU		69 23, 204617	10.1.3.1	10.1.1.1	TCP	49153-102 [ACK] :
59 25.022828	158.47.121.32	192,168.1.43 T	CP	66 35314 > iso-tsap	[ACK]	70 25,002374	10.1.1.1	10.1.3.1	MMS	unconfirmed-PDU
60 27.036353	192.168.1.43	158.47.121.32 M	MS	179 unconfirmed-PDU		71 25, 204617	10.1.3.1	10.1.1.1	TCP	49153-102 FACK]
61 27.036449	158.47.121.32	192,168.1.43 T	CP	66 35314 > iso-tsap	[ACK]	72 27.002374	10.1.1.1	10.1.3.1	MMS	unconfirmed-PDU
62 29.038935	192.168.1.43	158.47.121.32 M	MS	179 unconfirmed-PDU		73 27, 204617	10.1.3.1	10.1.1.1	TCP	49153-102 FACK1 :
63 29.039028	158.47.121.32	192,168.1.43 T	CP	66 35314 > iso-tsap	[ACK]	74 29,002374	10.1.1.1	10.1.3.1	MMS	unconfirmed-PDU
64 31.052553	192.168.1.43	158.47.121.32 M	MS	179 unconfirmed-PDU		75 29, 204617	10.1.3.1	10.1.1.1	TCP	49153-102 [ACK]
65 31.052653	158.47.121.32	192,168.1.43 T	CP	66 35314 > iso-tsap	[ACK]	15 251201021				inter the friend i

Testbed trace

Simulation trace

Testbed – Simulation alignment RSE Packet content

Frame 70: 179 bytes on wire (1432 bits), 179 bytes Ethernet II, Src: Cisco_0a:76:61 (70:ca:9b:0a:76:61), Dst: Internet Protocol Version 4. Src: 192,168,1,43 (192,168,1,4) H TPKT, Version: 3, Length: 113 ISO 8073/X.224 COTP Connection-Oriented Transport Protocol
 ISO 8073/X.224 COTP Connection-Oriented Transport Protocol # ISO 8327-1 OSI Session Protocol # ISO 8327-1 OSI Session Protocol H ISO 8823 OSI Presentation Protocol - MMS ∃ unconfirmed-PDU unconfirmedService: informationReport (0) informationReport wariableAccessSpecification: variableListName (1)
 ■
 IstofAccessResult: 9 items AccessResult: success (1) success: visible-string (10) visible-string: ID ⊟ AccessResult: success (1) ⊟ success: bit-string (4) Padding: 6 bit-string: 4800 ⊟ AccessResult: success (1) ∃ success: unsigned (6) unsigned: 6 ⊟ AccessResult: success (1) success: visible-string (10) visible-string: iedlInverter/LLNO\$dataset1 ⊟ AccessResult: success (1) ⊟ success: bit-string (4) Padding: 0 bit-string: Of ⊟ AccessResult: success (1) ⊟ success: structure (2) # structure: 1 item ⊟ AccessResult: success (1) E success: structure (2) 🖃 structure: 1 item Data: floating-point (7) floating-point: 083fbd70a4 AccessResult: success (1)
 ■ # AccessResult: success (1)

Testbed trace

 ⊞ ISO 8073/X.224 COTP Connection-Oriented Transport Protocol ISO 8327-1 OSI Session Protocol # ISO 8823 OSI Presentation Protocol - MMS unconfirmed-PDU unconfirmedService: informationReport (0) informationReport wariableAccessSpecification: variableListName (1) ⊟ listOfAccessResult: 14 items ⊟ AccessResult: success (1) ⊟ success: visible-string (10) visible-string: ID ⊟ AccessResult: success (1) ⊟ success: bit-string (4) Padding: 6 bit-string: 6900 ⊟ AccessResult: success (1) ⊟ success: unsigned (6) unsigned: 4 F AccessResult: success (1) ⊟ success: binary-time (12) binary-time: Jan 1, 2010 00:00:13.000000000 UTC ⊟ AccessResult: success (1) ⊟ success: visible-string (10) visible-string: ied1Inverter/LLNO\$dataset1 ⊟ AccessResult: success (1) ⊟ success: octet-string (9) octet-string: c8aa2ee725010000 ⊟ AccessResult: success (1) ⊟ success: bit-string (4) Padding: 5 bit-string: Ofe0 ⊟ AccessResult: success (1) ⊟ success: structure (2) E structure: 1 item Data: floating-point (7) floating-point: 0840b99998 H ACCP

Ethernet II, Src: 00:00:00_00:00:06 (00:00:00:00:00:06), Dst: 0

 Internet Protocol Version 4, Src: 10.1.1.1 (10.1.1.1), Dst: 10.

 Transmission Control Protocol, Src Port: iso-tsap (102). Dst Po

222 bytes captured (1

Frame 66: 222 bytes on wire (1776 bits),

⊕ TPKT, Version: 3, Length: 164

⊕ AC

Simulation trace

Ricerca sul Sistema

ns-3 DCE: attack trace

Node 8...n -> RSE testbed flooding attack tool

- UDP packet size: parameter of the scenario
- Target-> router@substation

No.	Time	Source	Destination	Protocol	I Length Info
66	9.490018	10.1.1.1	10.1.3.1	MMS	222 unconfirmed-PDU
67	9.690041	10.1.3.1	10.1.1.1	ТСР	64 49153 > iso-tsap [ACK] Seq=805 Ack=5497 Win=65535 Len=0
68	11.490018	10.1.1.1	10.1.3.1	MMS	222 unconfirmed-PDU
69	11.690041	10.1.3.1	10.1.1.1	ТСР	64 49153 > iso-tsap [ACK] Seq=805 Ack=5661 Win=65535 Len=0
70	13.490018	10.1.1.1	10.1.3.1	MMS	222 unconfirmed-PDU
71	13.690041	10.1.3.1	10.1.1.1	ТСР	64 49153 > iso-tsap [ACK] Seq=805 Ack=5825 Win=65535 Len=0
72	15.490018	10.1.1.1	10.1.3.1	MMS	222 unconfirmed-PDU
73	15.690041	10.1.3.1	10.1.1.1	ТСР	64 49153 > iso-tsap [ACK] Seq=805 Ack=5989 Win=65535 Len=0
74	16.495988	00:00:00_00:00	Broadcast	ARP	64 who has 10.1.2.1? Tell 10.1.2.3
75	16.495988	00:00:00_00:00	00:00:00_00:00:00	ARP	64 10.1.2.1 is at 00:00:00:00:05
76	16.496006	10.1.2.3	10.1.2.1	UDP	146 Source port: ddi-udp-1 Destination port: interwise
77	16.496019	10.1.2.3	10.1.2.1	UDP	146 Source port: ddi-udp-1 Destination port: interwise
78	16.496032	10.1.2.3	10.1.2.1	UDP	146 Source port: ddi-udp-1 Destination port: interwise
79	16.496077	10.1.2.3	10.1.2.1	Syslog	g 558 Attack UDP message from: NODE_4 to 10.1.2.1 : 514\0008\000\
80	16.496123	10.1.2.3	10.1.2.1	Syslog	g 558 Attack UDP message from: NODE_4 to 10.1.2.1 : 514\0008\000\
81	16.496168	10.1.2.3	10.1.2.1	Syslog	g 558 Attack UDP message from: NODE_4 to 10.1.2.1 : 514\0008\000\
82	16.496214	10.1.2.3	10.1.2.1	Syslog	g 558 Attack UDP message from: NODE_4 to 10.1.2.1 : 514\0008\000\
83	16.496260	10.1.2.3	10.1.2.1	Syslog	g 558 Attack UDP message from: NODE_4 to 10.1.2.1 : 514\0008\000\
84	16.496305	10.1.2.3	10.1.2.1	Syslog	g 558 Attack UDP message from: NODE_4 to 10.1.2.1 : 514\0008\000\

ns-3: trace analysis

Simulation trace analysis

- Varying parameters
 - Number of attackers
 - Packet size
 - Packet rate
- Same indicators as testbed
 - Report RTT, retransmissions, losses ...

LTE mobile technology

HV/MV substation - DERs communication by means of LTE technology

Ns-3 LTE communication mode

Sensitivity analysis

Scaling up the model

LTE model

Conclusion

Simulation **model** of the **communications** and attacks for Voltage Control function in Smart Grid

Model aligned with the **testbed**

The attack scenarios modeling activity helps to select more significant attack scenarios to be demonstrate

- Varying the attack parameters for flooding attack:
 - Number of attackers
 - Packet size
 - Packet rate

Analysis of several scenarios scaling up the model size in order to demonstrate scenarios not feasible in the testbed

- Including the ns-3 LTE module
- Varying
 - the number of DERs
 - the number of attackers
 - LTE parameters

