

Decentralized provision of active power by means of dynamic virtual power plants

Michael Sonnenschein

Sebastian Beer, Jörg Bremer, Christian Hinrichs, Astrid Nieße

University of Oldenburg – Environmental Informatics & OFFIS Institute for Information Technologie – R&D Division Energy

OFFIS – Institute for Information Technology

Research Cluster Smart Nord

Decentralised, agent based methods for control of medium and low voltage (smart) grids

Stability of medium and low voltage grids considering decentralized supply

Partners:

Uni Oldenburg, Uni Hannover, TU Braunschweig, TU Clausthal, NEXT ENERGY, OFFIS

Funding 4.1 M€ by Federal State of Lower Saxony

Duration 3/2012 – 2/2015

Dynamic Virtual Power Plants

DVPP MOTIVATION AND CONCEPT

Post EEG challenges for renewables

- Renewable energy has to be traded at a power market
- Requirement: Enhance supply of single renewable energy sources
 - Market barriers at the EEX (currently min. 100kW)
 - Reliability of supply regarding an agreed schedule (product)
- Smart Nord: Dynamic, distributed aggregation and control of units to adapt to
 - Demand traded at the market
 - Current set of active units in the system
 - Forecast of supply of single units

Virtual Power Plants (VPP)

Coordination of DVPPs

DVPP setup:

Coalition formation of plants for trading a specific power product

Predictive scheduling: Determine a schedule which

- guarantees the successful bid
- and respects all individually defined degrees of freedom
- Continuous scheduling: Reschedule if unforeseen changes occur

Payoff division:

Distribute the gained revenues just and reasonable to the coalition members

7

Decentralized, self-organized control

- Dynamic aggregation reacting to market conditions
- Units possibly distributed to several parts of the grid: no control centre, no micro grid approach
- No knowledge about number of units: Scalabity of control methods
- Ability to reconfigure dynamically in case of failures: Robustness regarding failure of single units
- \rightarrow Decentralized, self-organized control

Forming coalitions to trade power at the market

DVPP SETUP

OFFIS – Institute for Information Technology

Goal: deliver 100kW from 1 p.m. to 2 p.m.

- Selection of Neighborhood
 - Coalition Formation
- Expansion of Neighborhood

3

Evaluation Scenario 2030

Simulated Units

- ▶ 88o6 households
- ▶ 789 heat pumps
- 1048 photovoltaic systems
- ▶ 28 wind power generators
- ► 122 CHPs
- ► 789 redox-flow batteries
- Multi-agent system
 - heat pumps, PVs, CHPs, batteries controlled
 - demand of households, wind power not controlled
 - 2710 units for coalition formation
- Exemplary day: January 31st
- Coalitions form for hourly products day ahead

Configuration, Size, and Technology Profile of Coalitions

Configuration, Size, and Technology Profile of Coalitions

Configuration, Size, and Technology Profile of Coalitions

Planning schedules for units in a DVPP

PREDICTIVE SCHEDULING

OFFIS – Institute for Information Technology

Goal:

Select an optimal schedule for each unit in a DVPP

- with respect to the agreed power product
- with respect to each unit's private preferences
- in a completely decentralized manner

Predictive Planning as Combinatorial Optimization Problem

Combinatorial Optimization Heuristic for Distributed Agents

- Construction of Overlay Communication Topology
- 2. Agents react asynchronously to exchanged messages

COHDA – Properties

Convergence and **termination** formally proved using convergence stairs:

- *A*₁: Working memories of all agents are complete.
- \mathcal{A}_2 : A final solution candidate is found.
- A₃: Working memories of all agents are identical; heuristic terminates.

After initial setup (A_1), COHDA shows the **anytime** property:

 Newly produced solutions are always better than older solutions.

Run-Time properties:

- ▶ Best-Case: O(3)
- Worst-Case: $\mathcal{O}(n^m)$
- Empirically: $\mathcal{O}(\log m)$

(*m* = number of agents, *n* = avg. size of search spaces)

Algorithm 1 Behavior of an agent a_i in the COHDA heuristic.	
Local attributes:	
Si	Set of feasible schedules
λ_i	Schedule selection counting variable
$\kappa_i = (\zeta, \Omega_i, \gamma_i)$	> Working memory: target, system config, solution candidate
Objective functions:	
$f(\gamma), f(\Omega)$	\triangleright Rates γ or Ω according to the global objective function
$ACCEPT(\theta)$	\triangleright TRUE, iff θ acceptable according to local objectives
Behavior:	
 if receiving message κ_j then 	
$2: \zeta_j \leftarrow \zeta \in \kappa_j$	Extract target profile from message
$3: \Omega_j \leftarrow \Omega_j \in \kappa_j$	Extract system configuration from message
$i = \gamma_j \leftarrow \gamma_j \in \kappa_j$	Extract solution candidate from message
$\xi = \kappa'_j \leftarrow (\zeta, \Omega_i, \gamma_i)$	Create backup of own working memory
$\omega_i \leftarrow \omega_i \in \Omega_i$	\triangleright Extract own schedule selection from Ω_i
$\tau: K_i \leftarrow \{a_k \omega_k \in \Omega_i\}$	\triangleright Extract agent identifiers from γ_i
8: $K_j \leftarrow \{a_k \omega_k \in \Omega_j\}$	\triangleright Extract agent identifiers from γ_j
9: if $\zeta = \text{None then}$	b Store target profile
10: $\zeta \leftarrow \zeta_j$	
11: end if	
iz: for $\omega_k \in \Omega_i, \omega'_k \in \Omega_i$ do	\triangleright Update Ω_i
13: if $\forall \omega_x \in \Omega_i : x \neq k \text{ or } \lambda_k \in \omega'_k > \lambda_k \in \omega$	h then
14: $\Omega_i \leftarrow (\Omega_i \setminus \{\omega_k\}) \cup \{\omega'_k\}$	
15: end if	
is: end for	
	> Replace/Extend solution candidate
i7: if $K_i \subset K_j$ then	if the new one is larger
$18_i \gamma_i \leftarrow \gamma_j$	
19: else if $K_i \not\subseteq K_j$ then	or if it contains entries from unknown agents
20: $\gamma_i \leftarrow (a_i, \{\omega_k \in \gamma_i\} \cup \{\omega_k a_k \in K_j - K_i\})$)
else if $f(\gamma_j) > f(\gamma_i)$ then	or if it rates better
$\gamma_i \leftarrow \gamma_j$	
23: else if $f(\gamma_j) = f(\gamma_i)$ and $a_x \in \gamma_j > a_y \in \gamma_i$	then > or to break ties
$M_i = \gamma_i \leftarrow \gamma_j$	
25c end if	
26: $\omega'_i \leftarrow \omega_i \in \gamma_i$	\triangleright Extract own schedule selection from γ_i
if $\exists \theta \in S_i$: $f((\Omega_i \setminus \{\omega_i\}) \cup \{(a_i, \theta, \lambda_i + 1)\})$	> $f(\gamma_i)$ and $ACCEPT(\theta)$ then \triangleright Better schedule found?
28: $\omega'_i \leftarrow (a_i, \theta, \lambda_i + 1)$	> Create new schedule selection
29: $\gamma_i \leftarrow (a_i, (\Omega_i \setminus \{\omega_i\}) \cup \{\omega'_i\})$	Create new solution candidate
30: else if $\omega_i \neq \omega'_i$ then	>> Historical schedule chosen?
31: $\omega'_i \leftarrow (a_i, \theta \in \omega'_i, \lambda_i + 1)$	Create new schedule selection using the historical schedule
32: end if	
$\Omega_i \leftarrow (\Omega_i \setminus \{\omega_i\}) \cup \{\omega'_i\}$	\triangleright Update Ω_i with new schedule selection
if $(\zeta, \Omega_i, \gamma_i) \neq \kappa'_i$ then	> Publish working memory to neighbours
send $(\zeta, \Omega_i, \gamma_i)$ to neighbours	0 7
36 end if	
www.energy.ed	

37: end if

COHDA for multiple DVPPs

Evaluation of solution candidate only considering DVPP under negotiation

Scenario:

- ▶ 10 CHP (Vaillant EcoPower 20.0)
- EPEX Spot, Block Product "Peak Load" (100 kW, 9 am 8 pm)

Coping large sets of feasible schedules

REPRESENTING FLEXIBITIES

OFFIS – Institute for Information Technology

Essential for the acceptance of planning algorithms: Feasibility of solutions!

How can individual flexibilities, secondary goals, preferences, cost, etc. be considered in optimization?

Representation of flexibilies

Goal:

Representation of a unit's search space must be

- independent of individual configuration of units
- efficiently accessable for optimisation processes
- allow the representation of additional features
- hide private information

Representation of schedules / flexibilies

Process chain

- Samples of feasible schedules simulated as patterns for search space
- Modelling of search space by SVM classifier
- Derivation of decoder function to map arbitrary schedules into the space of feasible schedules
 - Unconstrained optimisation

Reacting to events during product delivery

CONTINUOUS SCHEDULING

Continuous Energy Scheduling

30 OFFIS – Institute for Information Technology

Results: Rescheduling

CONCLUSION

OFFIS – Institute for Information Technology

Completely self-organized virtual power plant
coalition formation
predictive scheduling
reactive scheduling
abstract representation of flexibilities

Smart grid algorithm engineering

Methodical challenges

- Engineering approach for self-organization methods
- `Well-behaviour' of distributed self-organizing methods
 - \rightarrow controlled self-organization as in organic computing
- Security aspects in the engineering process
- Representative evaluation scenarios
- Computational effort for sensitivity analysis

More information required? http://smartnord.de/downloads/SmartNordFinalReport.pdf