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Abstract. Fine-grained power readings based on smart metering are the
basis for future energy saving introduced by consumption information
on appliance level. To get appliance level information, non-intrusive load
monitoring (NILM) can be used to detect which appliance was turned on
when. With NILM it is possible to break down the household power draw,
power readings of the smart meter, to its appliance-induced components.
In this work we introduce a simple load disaggregation approach based
on metaheuristic optimization. Six different metaheuristics algorithms
are tested to its performance to disaggregate power draws from aggregate
power readings. We show how the simple proposed approach based on
active power readings can contribute to solve the problem to disaggregate
aggregated loads.
Keywords: Load Disaggregation, Metaheuristic Optimization, Smart
Metering, Non-Intrusive Load Monitoring

Increasing energy awareness is an important cornerstone for a more efficient usage
of energy. In particular, if information about the momentary energy consumption
of all her appliances are available to a user, she can make more effective decisions
on reducing energy consumption by using energy-hungry devices to a lesser
extend or by exchanging these devices with more efficient alternatives. Basically,
there are three possibilities to provide a detailed overview of the momentary
consumption of different devices: (i) Monitor each appliance in a home by a
smart plug or smart socket, (ii) employ smart appliances [6] that can measure
and report their consumption, or (iii) infer about the consumption state based
on aggregate measurements from a single meter. However, possibility (i) requires
considerable hardware effort, installation cost, and might come with significant
additional power consumption from the meters in the smart plugs. Solution (ii)
comes with high investment costs for smart appliances and requires all appliances
of interest to be equipped as smart appliance. Solution (iii), also known as NILM
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is more cost efficient, but requires good software algorithms to disaggregate the
total power draw into separate ones. The approach of NILM is non-intrusive in a
way that it does not require the installation of smart appliances or further meters.
NILM or load disaggregation, was first introduced by G. Hart [9] in which he
used active and reactive power measurements to model and classify appliances.
All up to now proposed NILM approaches can be divided into supervised and
unsupervised learning and classification approaches. To get an adequate overview
of state-of-the-art NILM approaches we refer to [15] and [16].

In this paper, we are approaching the problem of supervised load disaggrega-
tion; in particular to disaggregate appliance power data from the aggregate power
draw by an optimization approach. The appliance characteristics described by an
appliance model (consisting of the power consumption per appliance operation
state) are known a-priori. We optimize an objective function retrieving the
information which appliance is running at which point in time.

According to Hart [9] the load disaggregation problem can be modelled as
a subset sum problem. Hart faced the problem that even if all power states of
appliances are known small fluctuations and similarities between power states
lead to an dramatically decrease in the performance of the approach. Therefore,
in this paper we model the load disaggregation problem as a knapsack problem
to verify the statement provided by Hart.

The knapsack problem is NP-complete, which means there is no fast (poly-
nomial time) algorithm that guarantees a correct solution. Although for low
number of items, or in our case, devices, the knapsack problem can be still solved
using exact algorithms, inaccuracies in the measurement or power models cause
further problems when applying exact optimization algorithms, iterative methods,
or simple heuristics. In contrast, metaheuristic optimization promise a faster
solution at the cost of correctness and can handle inaccurate measurement and
modeling. Thus, we approach the problem with state-of-the-art metaheuristic
optimization approaches such as i) the evolutionary algorithm [5], ii) differential
evolution [2], iii) particle swarm optimization [10], iv) simulated annealing [8], v)
the cuckoo search algorithm [7] and vi) firefly optimization [14]. We evaluate the
performance of the optimization-based load disaggregator on real world data in
which similar and realistic consumption behaviors are present.

The remainder of this paper is organized as follows: Section 1 provides a com-
prehensive summary of all used metaheuristic optimization approaches. Section
2 describes the proposed approach and how to model the load disaggregation
problem as a knapsack problem. In Section 3 the evaluation settings are presented.
Section 4 provides evaluations of case studies to assess the proposed approach.
Finally, Section 5 discusses the presented results and Section 6 summarizes the
paper.

1 Meta-Heuristics

1.1 Evolutionary Algorithm

The evolutionary algorithm (EA) is a population-based optimization approach
inspired by the evolution of natural life [5]. A set of individuals represents a



population. The algorithm aims at optimizing the population according to a
fitness or objective function over several generations. The individuals are modified
by the evolutionary operators mutation (mutation of individuals), recombination
(combination of individuals) and selection (selection of individuals, which will
survive, i.e., remain in the population for the next generation).

1.2 Differential Evolution

The differential evolution (DE) [2] is a special form of the EA and, therefore,
population-based. Each population of a generation consists of a candidate solution
of the objective function. The algorithm maintains candidate solutions and creates
new solutions by combining existing ones based on simple formulas. The candidate
solutions are evaluated based on a given fitness or objective function as for the
evolutionary algorithm.

1.3 Particle Swarm Optimization

The particle swarm optimization (PSO)[10] is a population-based algorithm, in
which the population with its candidate solutions is represented as a swarm of
particles. The aim of the swarm is it to move around the search space guided by
their position and the position of the best candidate solution.

1.4 Simulated Annealing

The simulated annealing (SA)[8] approach is inspired by the annealing of metal-
lurgy, where metal is heated up and slowly cooled down to strengthen the metal
structure by rearranging the crystal structure. It implements a random search,
where each step decreasing the objective function (in case of a minimization
problem) is accepted. A step increasing (worsening) the objective function is
accepted probabilistically based on the change of the objective function and a
simulated “temperature” which decreases over time as the solution converges.

1.5 Cuckoo Search Algorithm

The cuckoo search algorithm (CS)[7] is inspired by the brood parasitism of cuckoo
species laying their eggs into nests of other birds of different species. An egg in
a nest is representing a solution of an optimization problem and an cuckoo egg
stands for an new solution.

1.6 Firefly Algorithm

The firefly algorithm (FA)[14] is inspired by the flashing behavior of Asian
fireflies which flash synchronously to attract other fireflies. The attractiveness is
proportional to the brightness of a firefly in which the brightness represents the
objective function. In detail, the FA is based on the following rules [14]:

– All fireflies are unisexual. One firefly will be attracted by all other fireflies.



– Attractiveness is proportional to their brightness, thus for any two flashing
fireflies, the less brighter one will move towards be brighter one. The at-
tractiveness is proportional to the brightness and the both decrease as their
distance increases.

– If there is no brighter one than a particular firefly, it will move randomly.
– The brightness of a firefly is affected or determined by the landscape of the

objective function

The objective function is represented by the brightness of the fireflies.

2 Approach

The power demand of a household results form the used appliances. Typically,
each appliance has a characteristic way of consuming energy. For example, one
appliance is consuming a high amount of energy for a short period of time or
another appliance behaves in a multi-state manner consuming in each running
state a different amount of power. The total power load can be considered as
the superimposition or the aggregation of the power profiles from each appliance
over time. G. Hart (et. al [9]) had the idea to use the knowledge of appliance
characteristics and the aggregate power demand to introduce the problem of load
disaggregation or non-intrusive load monitoring (NILM). NILM breaks down the
aggregate power demand to its components on appliance level. He classified the
problem to disaggregate appliances. It is computational intractable and belongs
to the group of NP-complete problems. The aim of the load disaggregator is
to find the best composition of appliance power states to minimize the error
between the estimated and the real signal. There are several approaches visible
to solve the load disaggregation problem. In this paper we are concentrating on
an supervised approach solved by optimization. The first task is it to define an
objective function to be optimized. Therefore, the aggregate power draw P (t)
can be described as

P (t) = p1(t) + p2(t) + ⋅ ⋅ ⋅ + pn(t) for t ∈ {1, T}, (1)

where pi(t) is the power profile of each appliance in the set of N appliances and
t represents the discrete time vector from 1 to T . The problem is to find the
best set of appliance power profiles whereas each power profile is activated by an
appliance being in a on or off state. We can model the problem as

e(t) =∣ (P (t) −
N

∑
i=1

pi ⋅ ai(t)) ∣ (2)

where ai(t) represents the appliance state vector (e.g., appliance is on or off).
In this work, we are modelling the presented optimization problem as the so-
called knapsack problem [4]. The knapsack problem is a well-known optimization
problem with the aim of packing a set of n items with a certain weight wi and
profit di into a knapsack of capacity C in the most profitable way. If it is possible
to place an item into the knapsack without exceeding the capacity C by using



xi ∈ {0, 1}, which is responsible for whether or not a certain item is used, a profit
di is earned. This context can be summarized as follows

maximize
n

∑
i=1

di ⋅ xi, (3)

subject to
n

∑
i=1

wi ⋅ xi ≤ C. (4)

The problem of packing items into a desired shape can be adopted to the
load disaggregation problem. NILM has the aim to disaggregate loads from the
aggregate power demand according to their own power profile pi in the measured
total load P (t). The power profiles pi are mainly characterized by their power
magnitude mi and their time of usage. The total power load is given by:

P (t) =
n

∑
i=1

Pi ⋅ ai(t) + e(t), (5)

where n is the number of known and used power states, ai(t) ∈ [0,1] represents
the state vector of a power state being on (ai(t) = 1) or off (ai(t) = 0). An
off/on appliance would be represented with its corresponding power state, while
a multi-state appliance, e. g., astove with multiple cooking plates, can correspond
to multiple power states. e(t) describes an error term. The general optimization
problem of NILM can be formulated as the minimum error e(t) of the total power
load and the estimated aggregation of appliance power profiles:

e(t) = arg min ∣P (t) −
n

∑
i=1

Pi ⋅ ai(t)∣. (6)

The NILM system tries to find the appliance states by ai(t) to minimize the
error between the sum of superimposed appliance power profiles and the total
load P (t). This relates to the knapsack problem, where in the case of NILM the
capacity C of the knapsack corresponds to the total load P (t) and the items of
the knapsack correspond to the appliance power profiles Pi. We assume that the
profit di equals 1 since we suppose that all appliances in the household are of
equal importance concerning their usage. The aim of any optimization approach is
to find a composition of power profiles Pi, which can be packed into the measured
total load P (t) with minimum error. Therefore, we modify the general knapsack
problem by replacing the profit maximization with an error minimization. An
illustration of the basic principle can be seen in Figure 1, where a collection of
possible power profiles Pi and the trend of the total power load are presented. In
detail, the approach tries to find for each point in time the best composition of
appliance power profiles described by their power demands. The optimization
approach has to optimize the vector ai(t) represented as a binary vector. The
value 1 means an appliance is on at time t and 0 means an appliance is off at
time t. The objective function is represented by

Fs = −∣P (t) −
N

∑
i=1

Pi ⋅ ai(t)∣. (7)



Fig. 1. The approach estimates the optimal set of appliance power states for each used
time sample with the table of possible power states

It describes a minimization problem since the optimal fitness is a fitness of 0.
The optimization process of the state vector ai(t) is done on each power sample.
We used six different optimization approaches to solve this problem consisting
of the i) the evolutionary algorithm, ii) differential evolution, iii) particle swarm
optimization, iv) simulated annealing, v) the cuckoo search algorithm and vi) fire
fly optimization. If necessary the optimization approaches are modified to be able
to work with the problem characteristics. The use of metaheuristics is necessary
because the problem suffers on measurement inaccuracies, noisy measurements
and modelling errors.

3 Settings

3.1 Algorithm Settings

All metaheuristic optimization approaches are modified to work with discrete
inputs. This is mainly done by rounding the results from the continuous case to
the discrete values 0 and 1. However, the used metaheuristics are dependent on
different parameters. In Table 1 all parameters are presented. The parameters
were set due to empirical evaluations.

3.2 Data Settings

To test the proposed approach real measurements of appliances are used. There
exists several public available datasets such as the REDD dataset [11], the Eco-
dataset [1], the GREEND dataset [13] and the AMPD dataset [12]. We have
chosen the REDD dataset as reference dataset. It provides appliance level power
measurements in 1s resolution for 6 different houses. For our evaluation we took
the first house with 6 common appliances which are the oven, the fridge, the
dishwasher, the kitchen outlet, the microwave and the washer/dryer. We derived



Table 1. List of parameters for each used metaheuristic optimization approach

Algorithm Parameter Value

EA, DE, PSO FA No. of generations g 200
EA, DE, PSO Population size p 100
EA, Mutation operator uniform mutation
EA, Recombination operator one-point crossover
EA, Selection operator elite selection
DE Crossover probability 0.5
DE Scaling factor 0.8
PSO Cognitive parameter c1 2
PSO Social parameter c2 1
PSO Constriction parameter C 1
SA Cooling steps 200
SA Maximum initial temperature 100
CS Number of nests 50
CS Discovery rate 0.25
FA Number of fireflies 50
FA Randomness factor 0.9
FA Randomness reduction factor 0.95
FA Absorption coefficient 0.2

the present power states for each appliance. We distinguish between automatic
detected power states and power states detected by expert knowledge. In the case
of automatic detected power states we used the algorithm presented in [3]. The
algorithm consists of de-noising, filtering, edge detection with event detection and
clustering of events to appliance states. The states are detected from submetered
power draws where similarities between power states are possible. Table 2 lists
the used appliances and their characteristics. The expert detected states are
identified manually by the human. No similarities between power states were
detected. Small power states such as standby power are considered in contrast to
automatic detected power states.

3.3 Evaluation Metric

To be able to evaluate the performance of the metaheuristic knapsack approach, we
evaluate the energy consumption for each appliance and compare it to the ground
truth energy data. The power draw for each power state is optimized individually.
Therefore, the power states and their resulting optimization results belonging to
an appliance are grouped and compared to the ground truth, respectively.

4 Case studies

To check the applicability of the metaheuristic based load disaggregation approach
we introduce two case studies i) appliance set with similar power values and ii)
appliance set with unique power values. Effects such as similarities of power values,
similar combined power values, and measurement noise affect the optimization
result.



4.1 Appliance set with similar power values

In this case study, we decided to use real world consumption data in which
appliances have similar consumption behaviour. Thus, the amount of power
consumed by an appliance A can be similar to the one consumed by appliance
B. The case study should show if the optimization-based approach is able to
distinguish between appliances even if they have similar power demands or if the
combination of power states leads to another power state. In case of the REDD
dataset, we used 6 appliances of house 1 in which we identified the following
appliance states for each appliance listed in Table 2 as utilizable.

Table 2. Table of used appliance types,
the number of operation states and the
corresponding power values for each
operation state of the REDD dataset
house 1. States were detected by a state
detection algorithm

type power [W]
oven [0 1690 2455]
fridge [0 190 ]

kitchen outlet [0 210 440 880 1100]
microwave [0 60 1533]

stove [0 260 710 1440]
washer/dryer [0 2712]

Table 3. Table of used appliance types,
the number of operation states and the
corresponding power values for each
operation state of the REDD dataset
house 1. States were detected by a hu-
man.

type power [W]
oven [0 1600]
fridge [0 8 190 2000]

kitchen outlet [0 1080]
microwave [0 5 1550]

stove [0 1430]
washer/dryer [0 2700]

The input for each metaheuristic approach are the power states listed in Table
2 and we used an observation window of one day.

In Figure 2, 3 and 4 the energy shares of the optimization approaches and
in Figure 5 the ground truth energy shares are presented. The energy shares
of the washer/dryer are not shown since the device was off during the whole
observation time and the algorithms always detected this fact. We claim detecting
an appliance to be off is of the same difficulty as to detect an appliance to be on.
There exists no preferred state for the optimization process.

However, the results show that the approach is not able to distinguish between
different appliances. It is able to track and to optimize the problem. The mean
error between optimized and real power draw is around 13W which we consider
a satisfying result. Nevertheless, the similarity of power states, the possible
representation of a power state by a combination of other states and noise effects
are influencing the problem. In detail, the appliances oven, fridge and kitchen
outlet have similar power states which severely affects the optimization result.
This influence is presented comparing the energy share of the fridge and the
kitchen outlet with the real energy shares, respectively.

Moreover, the error in total is comparable high. As reason we claim the
influence of noise effects and perfectly modelled appliance states. On the other
hand, the influence of different metaheuristic algorithms was less significant. In
particular no algorithm was able to handle this problem sufficiently well.
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Fig. 3. Energy shares for the optimization results of PSO and SA with similar power
states

4.2 Appliance set with unique power states

In contrast to the previous section, we are now considering appliance states which
occur almost uniquely. Similarities between appliances are only possible for very
small power values such as the standby power. In Table 3 all possible power
states are listed. Each state was manually identified by human. The input for
the metaheuristic load disaggregator are the power states listed in this table and
we used an observation window of one day.

Figure 5 presents the estimated and the real energy share. The results are
improved compared to the previous case study. Clearly distinguishable power
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Fig. 4. Energy shares for the optimization results of CS and FA with similar power
states

states as for the oven and the fridge can be estimated very well. Nevertheless,
also in this case study the effect of similar/recombined of power states and
noise effects are present and affect the results. In this evaluation, we took
the energy share of the evolutionary algorithm as representative case since all
other approaches achieved similar results. Only exception was the result for the
simulated annealing case study, where the oven reached only 5% and the stove
14%. The other estimates were very similar. As in the previous case study, the
washer/dryer is not shown in this figure since it was not used in the observed
time and was well detected by all approaches.

With less similarities in the power draw , the total error of the optimization
result is getting better as well as the mean error between optimized and real
power draws over the time (error of 7W ). As reason we claim the fact on the
one hand the different/dissimilar power states and the lower number of possible
power states. The lower the number of considered power states, the better the
possible optimization result.

5 Discussion

The presented approaches have not been able to distinguish multiple power states
which are similar to each other or can be created by recombining other power
states. The reason therefore is the lack of information based on the use of one
feature (in our case the power value of a state). As a consequence, the problem has
to be modelled by more advanced techniques including appliance structure (e.g.,
state machine), timing behaviors and probabilistic representation. All presented
metaheuristic approaches achieved similar results. The choice of which one taken,
can be made by considering the computational time, the number of parameters
to be set and the chosen applications. According to our results, we claim that
the metaheuristic approach is suitable for NILM applications with a low number
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Fig. 5. Energy shares for the optimization results of EA with unique power states and
the ground truth energy shares

of appliances with different power states. Possible applications would be a smart
power plug or multiple power plug to detect attached appliances.

6 Summary

In this paper a simple load disaggregation approach based on metaheuristic
optimization has been presented. Six different metaheuristic algorithms (evolu-
tionary algorithm, differential evolution, particle swarm optimization, simulated
annealing, cuckoo search algorithm, firefly optimization) were tested according to
their ability to disaggregate loads from the total power demand. Our benchmark
problem uses an aggregate power value from a set of appliances and then requires
the algorithms to find the underlying composition of appliance power states by
minimizing the error between the estimated and real power draw. The approach is
related to the well-known knapsack problem and modified according to problem-
specific characteristics. The approach was tested on real-word measurements
with different sets of appliance power states. The results show that the overall
approach provides satisfying results for an appliance set where power draws are
easy to separate. For appliances with very similar power draws the optimization
approach is not able to disaggregate the overall power draw due to lack of further
information which would be necessary to distinguish between similar appliances.
Future research will concentrate on the improvement to disaggregate similar
appliances from the total power draw. This should be achieved by enlarging the
feature set for the optimization approach with further appliance characteristics
as reactive power, common time of usage and common time duration in use,
essentially then employing a multi-objective optimization approach to solve the
disaggregation problem.
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